

Figure 3. Schematic drawings of (a) a semi-bridging CO group; (b) a "semi-triple-bridging" CO group.

Scheme I

In complex 8, three things reinforce this type of interaction: (a) the pseudo-square-planar configuration about the unique rhodium atom, (b) its coordinative unsaturation, and (c) the fact that Rh-1 formally carries the molecule's negative charge.

We offer the route outlined in Scheme I as a working hypothesis for the mechanism of formation of 7 and 8. As in the cobalt case, we assume that initial reduction to radical anion 10 is followed by competing CO loss (giving 11) and loss of the cyclopentadienyl ring (leading to a (probably highly solvated) $Rh(CO)_2$ fragment (12)). Complex 11 reacts with a second molecule of starting material, again followed by CO loss, to give radical anion 13. Complex 13 is apparently more reactive than 3 and, instead of terminating the reaction at this stage, undergoes "radical coupling" with 12; this leads to the isolated trinuclear cluster 8. The alternative fate of 12 again parallels the cobalt reduction, giving 7 via coordination of CO and further reduction.

Carbonylation of 8 occurs unusually rapidly, leading cleanly to $Rh(CO)_4^-$ and $CpRh(CO)_2$ (no reaction between CO and 3 occurs in 24 h). It seems likely that this process involves initial dissociation, giving $Rh(CO)_4^-$ and 9. By analogy to the corresponding doubly bonded cobalt dimer,^{7,8} 9 should react immediately with CO, leading to 4, as is observed.

Acknowledgments. We are grateful to Dr. Richard E. Marsh for extensive assistance with the X-ray structure determination. Financial support of this work was provided by the National Science Foundation (Grant No. CHE-78-08706). The diffraction facility is also supported by the NSF (Grant No. CHE-76-05471).

Supplementary Material Available. Three tables, listing interatomic distances and angles, fractional coordinates, and intensity data (26 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) N. E. Schore, C. S. Ilenda, and R. G. Bergman, J. Am. Chem. Soc., 99, 1781
- (1977).
 (2) (a) R. Hill and S. A. R. Knox, J. Organomet. Chem., 84, C31 (1975); (b) R. Hill and S. A. R. Knox, J. Chem. Soc., Dalton Trans., 2622 (1975).
- (3) P. Chini and S. Martinengo, *Inorg. Chim. Acta*, **3**, 21 (1969).
 (4) M. Darensbourg, H. Barros, and C. Borman, *J. Am. Chem. Soc.*, **99**, 1647
- (1977)
- (5) Crystals identical with those used for the X-ray study were shown to have an IR spectrum identical with those obtained by large-scale recrystallization from THF/hexane
- (6) F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 96, 1233 (1974), and references cited there. (7) N. E. Schore, C. Ilenda, and R. G. Bergman, J. Am. Chem. Soc., 98, 7436
- (1976). W.-S. Lee and H. H. Brintzinger, J. Organomet. Chem., 127, 87 (1977). (8)
- Meridian Hunt Bennett Fellow, 1978.
- (10)To whom inquiries should be addressed at the University of California, Berkeley.

William D. Jones,⁹ Mary Ann White, Robert G. Bergman¹⁰ Contribution No. 5797 Laboratories of Chemistry, California Institute of Technology Pasadena, California 91125, and Department of Chemistry, University of California, Berkeley Berkeley, California 94720

Received May 29, 1976

Polyoxoanion Supported Organometallics: Synthesis and Characterization of $\alpha - [(\eta^5 - C_5 H_5) Ti(PW_{11}O_{39})]^{4-1}$

Sir:

Solid oxide supported organometallic compounds of the early transition elements have been studied extensively during the past 20 years as catalysts for a variety of hydrocarbon transformations.¹⁻³ These catalysts not only provide the practical advantages of heterogeneous catalysts relative to homogeneous systems with regard to product isolation and catalyst stability, but in many cases also provide activity which far exceeds that of their homogeneous analogues. The factors responsible for this enhanced activity remain obscure owing to the difficulty of characterizing surface-bound species. We have therefore sought the isolation of organometallic compounds bound to the surfaces of soluble oxide clusters with the hope that these species might provide insights into the factors responsible for the reactivity of solid oxide supported analogues. We report here the synthesis and characterization of α -[$(\eta^5$ -C₅H₅)Ti(PW₁₁O₃₉)]⁴⁻, the first polyoxoanion supported organometallic complex.

The α -[$(\eta^5$ -C₅H₅)Ti(PW₁₁O₃₉)]⁴⁻ ion (see Figure 1) was selected as an initial synthetic objective since several of its structural features are precedented. This ion is related to the well-characterized $PW_{12}O_{40}^{3-}$ ion⁴ by substitution of a $[W^{V1}O]^{4+}$ subunit with $[Ti^{1V}(\eta^5 - C_5H_5)]^{3+}$. Similar substitution of a $[W^{V1}O]^{4+}$ unit in the $PW_{12}O_{40}^{3-}$ anion by inorganic cations has been demonstrated to yield stable complexes.⁵⁻⁷ $[Ti^{1V}(\eta^5 - C_5H_5)]^{3+}$ was chosen as an organometallic subunit for three reasons. First, Ti^{IV} has a 0.745 Å crystal radius⁸ which is almost identical with the 0.74 Å crystal radius⁸ for W^{VI}, indicating that Ti^{IV} is geometrically well suited for W^{VI} substitution in the PW₁₂O₄₀³⁻ structure. Second, Ti^{IV} has a vast oxygen chemistry,⁹ assuring the thermodynamic stability of Ti^{IV}–O bonds. Finally, the $[Ti^{IV}(\eta^5-C_5H_5)]^{3+}$ unit has been thoroughly characterized in a large number of organometallic compounds and can be easily identified using routine spectroscopic techniques.¹⁰

Synthesis of the desired complex is accomplished by allowing α -[(*n*-C₄H₉)₄N]₄H₃PW₁₁O₃₉ to react with (η^5 -C₅H₅)TiCl₃ in $1,2-C_2H_4Cl_2$. Recrystallization of the crude reaction product from $(CH_3)_2CO/C_6H_5CH_3$ yields pure α -[$(n-C_4H_9)_4N$]₄-

Figure 1. Proposed C_s structure of the α -[(η^5 -C₅H₅)Ti(PW₁₁O₃₉)]⁴⁻ ion viewed approximately down the pseudo-C₃ axis of the central phosphate group. Within the α -PW₁₁O₃₉⁷⁻ ligand, small open circles represent tungsten atoms, large open circles represent oxygen atoms, and the large filled circle represents the phosphorus atom. The OWTi oxygens which are bonded to tungsten and titanium atoms are labeled; oxygens labeled with primes (') are related to those labeled without primes by reflection symmetry.

Table I. 13.5-MHz ¹⁷O NMR Chemical Shift Data

anion ^a	chemical shifts ^{b,c}		
	ÓW	OWTi	OW ₂
α -PW ₁₂ O ₄₀ ³⁻	769		431 405
α -SiW ₁₂ O ₄₀ ⁴⁻	761		427 405
$\alpha - (\eta^5 - C_5 H_5) Ti - (PW_{11}O_{39})^{4-}$	729 720 <i>ª</i>	575 558	415 396 383 <i>d</i>

^a Spectra were measured from 0.03-0.05 M CH₃CN solutions of ¹⁷O-enriched anions as $(n-C_4H_9)_4N^+$ salts at 80 °C. ^b Positive chemical shift in parts per million downfield from pure H₂O at 25 °C (±3 ppm). ^c Chemical shifts for the OXW₃ oxygens, X = P or Si, are not given here. ^d Shoulder.

 $[(\eta^5 - C_5 H_5) Ti(PW_{11}O_{39})]$ (1). This formulation is consistent with elemental analysis,¹¹ conductivity measurements,¹² and ¹H NMR data.¹³ The C_s structure shown in Figure 1 is proposed on the basis of ¹⁷O NMR and IR spectroscopic data. The ¹⁷O NMR spectrum of **1** in CH₃CN displays two resonances of approximately equal intensity at 575 and 558 ppm which are assigned to the two types of bridging oxygens, each bonded to W and Ti atoms (see Table I and Figure 1). Comparison of the IR spectra of α -[(n-C₄H₉)₄N]₃PW₁₂O₄₀ (2) and 1 (see Figure 2) reveals striking similarities in the 650-1050-cm⁻¹ metal-oxygen stretching region which provide support for the proposed structural similarity of 2 and 1. Note, however, that the 1080-cm⁻¹ triply degenerate asymmetric phosphate stretch for 2 is split into two bands at 1088 and 1060 cm^{-1} in the spectrum of 1. This splitting, caused by lowering of the tetrahedral phosphate site symmetry in 2, has been observed in related complexes derived from $PW_{12}O_{40}^{3-}$ by replacement of a [W^{V1}O]⁴⁺ subunit by inorganic cations.¹⁴ Evidence for the mode of cyclopentadienyl bonding is provided by the IR spectrum of the potassium salt α -K₄(η^5 -C₅H₅)Ti(PW₁₁O₃₉). nH_2O^{15} (3) which displays a single, sharp absorption at 1445 cm⁻¹ in the 1300-1500-cm⁻¹ region. This feature is characteristic of the C-C stretch for a η^5 -C₅H₅ ligand bonded to Ti^{IV,16}

Figure 2. IR spectra of (a) α -[(n-C₄H₉)₄N]₃PW₁₂O₄₀ (2) in KBr pellet and (b) α -[(n-C₄H₉)₄N]₄[(η^5 -C₅H₅)Ti(PW₁₁O₃₉)] (1) in KBr pellet.

The α -[(η^5 -C₅H₅)Ti(PW₁₁O₃₉)]⁴⁻ ion differs markedly from all previously studied mononuclear oxygen-bonded complexes of mono(cyclopentadienyl)titanium(IV) with regard to hydrolytic stability. The alkoxides, phenoxides, carboxylates, and β -diketonates of $[Ti^{1V}(\eta^5 - C_5H_5)]^{3+}$ all decompose in the presence of water with loss of inorganic and/or organic ligands. The α -[$(\eta^5$ -C₅H₅)Ti(PW₁₁O₃₉)]⁴⁻ ion, however, is remarkably stable toward hydrolysis. A 0.05 M aqueous solution of its potassium salt, 3, may be refluxed for 12 h without detectable decomposition.¹⁷ Furthermore, a 0.05 M solution of 3 in 1 M aqueous HCl shows no decomposition after 12 at 25 °C.¹⁷ Although this unprecedented stability is undoubtedly due in part to steric factors, we believe that electronic properties of the $PW_{11}O_{39}^{7-}$ ligand are also responsible. The ability of this ligand to serve as a "charge sink" which delocalizes negative charge away from the titanium coordination sphere is demonstrated by ¹⁷O NMR data given in Table I. Substitution of P^{V} in α -PW₁₂O₄₀³⁻ by Si^{1V} to yield α -SiW₁₂O₄₀⁴⁻ leads to an upfield shift of only 8 ppm for the terminal oxygen resonance, reflecting only a slight delocalization of the additional anionic charge to the terminal oxygens.¹⁸ This result is consistent with the weakness (>2.2 Å^{4,19}) of the bonds which connect the central $(X^{n+}O_4)^{(8-n)-}$ subunit with the surrounding $W_{12}O_{36}$ cage in the α - $X^{n+}W_{12}O_{40}^{(8-n)-1}$ structure. Substitution of a $[W^{VI}O]^{4+}$ subunit in α - $PW_{12}O_{40}^{3-}$ by $[Ti^{1V}(\eta^5-C_5H_5)]^{3+}$ to yield α - $[(\eta^5-C_5H_5)-Ti(PW_{11}O_{39})]^{4-}$ leads to upfield shifts of at least 40 ppm for all terminal oxygen resonances. This pronounced displacement of chemical-shift values reflects extensive delocalization of the additional negative charge over the surface of the entire polyoxo anion. A comparison of the IR spectra of 1 and 2 (see Figure 2) similarly shows the effect of charge delocalization. The terminal oxygen vibrations for 1 at 995 cm⁻¹ are shifted to lower energy by 18 cm⁻¹ relative to the terminal oxygen vibrations for 2 at 973 cm⁻¹.

The stability of polyoxoanion supported $[Ti^{1V}(\eta^5-C_5H_5)]^{3+}$ leads naturally to the question of whether more reactive organometallic species might be stabilized when incorporated into polyoxoanion structures. We are currently characterizing compounds resulting from the reaction of a series of organometallic reagents with the α -H₃PW₁₁O₃₉⁴⁻ anion and other polyoxoanions. Preliminary results indicate that the compound reported here is only the first representative of a large family of polyoxoanion supported organometallic compounds.

Acknowledgments. We are grateful to Mr. I. Miura for measuring ¹⁷O NMR spectra and acknowledge the National Science Foundation for providing financial support.

References and Notes

- Y. I. Yermakov, *Catal. Rev.—Sci. Eng.*, **13**, 77 (1976).
 D. G. H. Ballard, *Adv. Catal.*, **23**, 263 (1973). (3) F. J. Karol, Am. Chem. Soc., Div. Org. Coat. Plast. Chem., Pap., 37, 310
- (4) G. M. Brown, M. R. Noe-Spirlet, W. R. Busing, and H. A. Levy, Acta Crystallogr., Sect. B, 33, 1038 (1977).
- (5) T. J. R. Weakley and S. A. Malik, J. Inorg. Nucl. Chem., 29, 2935 (1967)
- (6) C. M. Tourné, G. F. Tourné, S. A. Malik, and T. J. R. Weakley, J. Inorg. Nucl. Chem., 32, 3875 (1970).
- (7) P. T. Meiklejohn, M. T. Pope, and R. A. Prados, J. Am. Chem. Soc., 96, 6779 (1974).
- (8) Crystal radii for coordination number six: R. D. Shannon, Acta Crystallogr., Sect. A, 32, 751 (1976). (9) D. L. Kepert, "The Early Transition Metals", Academic Press, New York,
- 1972.
- (10) P. C. Wailes, R. S. P. Coutts, and H. Weigold, "Organometallic Chemistry of Titanium, Zirconium, and Hafnium", Academic Press, New York, 1974,
- pp 30–50. (11) Calculated (found) weight percentages for C₆₉H₁₄₉N₄TiPW₁₁O₃₉: C, 22.04 (22.09); H, 3.99 (4.02); N, 1.49 (1.45); Ti, 1.27 (1.36); P, 0.82 (0.75); W, 53.78 (53.71).
- (12) The Onsager limiting slope for 1 in CH₃CN is 2.6 \times 10³ Ω^{-1} cm² equiv^{-3/2} $L^{1/2}$, a value which compares well with the slope of 2.5 \times 10³ Ω^{-1} cm² equiv^{-3/2} $L^{1/2}$ for the 1:4 electrolyte α -[(n-C_4H_9)_4N]_4SiW_{12}O_{40} in CH₃CN.
- (13) The ¹H NMR spectrum of 1 in CD₃CN displays a C₅H₅ resonance at δ 6.5 ppm and an NCH₂ multiplet at δ 3.1–3.3 ppm with relative intensities 1: 6.6.
- (14) C. Rocchiccioli-Deltcheff and R. Thouvenot, J. Chem. Res. (M), 0549 (1977).
- (15) Prepared by adding a solution of 1 in 1,2-C₂H₄Cl₂ to a mixture of CHCl₃ and saturated aqueous KI, and recrystallizing the resulting precipitate from
- (16) F. W. Siegert and H. J. de Liefde Meijer, J. Organomet. Chem., 20, 141 (1969).
- (17) Pure 1 was recovered in >90% yield after addition of $(n-C_4H_9)_4NBr$ to the aqueous solution. (18) ¹⁷O NMR chemical shifts have been demonstrated to be very sensitive to
- changes in metal-oxygen bond strengths: W. G. Klemperer and W. Shum, J. Am. Chem. Soc., 99, 3544 (1977); W. G. Klemperer and W. Shum, *ibid.*, 100, 4891 (1978).
- (19) A. Kobayashi and Y. Sasaki, Bull Chem. Soc. Jpn., 48, 885 (1975). (20) Fellow of the Alfred P. Sloan Foundation, 1976-1978.

R. K. C. Ho, W. G. Klemperer*20

Department of Chemistry, Columbia University New York, New York 10027 Received May 26, 1978

Multiple Metal-Carbon Bonds. 12.1 Tungsten and Molybdenum Neopentylidyne and Some Tungsten **Neopentylidene Complexes**

Sir:

The formation of alkylidene (=CHR) and alkylidyne $(\equiv CR)$ complexes of Nb and Ta by α -hydrogen abstraction, and acceleration of that process by adding small, basic tertiary phosphines, is now well established¹ ($R = CMe_3$ or C_6H_5). A significant question is whether any of these principles can be extended to group 4 or 6 metals. Establishing the latter is probably more important owing to the suspected role of W and Mo alkylidene complexes in the olefin metathesis reaction.² We present results here which demonstrate that this is possible. The rather extraordinary Mo and W complexes formed thereby are thermally stable, well-behaved, and easily characterized by standard techniques.

A clear, brilliant yellow solution is obtained when 6 mol of LiCH₂CMe₃ is added to WCl₆ in ether at -78 °C. When this

is warmed to 25 °C, the color darkens to red-brown. Removing the solvent in vacuo and subliming the residue at 70 °C (1 μ) gives yellow crystals of air-sensitive (Me₃CCH₂)₃W=CCMe₃ (1) in 25% yield (eq 1) (Calcd for $WC_{20}H_{42}$: C, 51.51; H, 9.07. Found: C, 51.32; H, 8.90.). A similar reaction at 25 °C also gives 1 in 25% yield. The analogous -78 °C reaction between MoCl₅ and 5 mol of LiCH₂CMe₃ gives pale yellow, air- and light-sensitive $(Me_3CCH_2)_3Mo \equiv CCMe_3$ (2, 15% yield). Since the first mole of LiCH₂CMe₃ at 25 °C reduces W(VI) to W(V),³ each reaction is not a straightforward double α abstraction (neopentyl \rightarrow neopentylidene \rightarrow neopentylidyne^{1,4}) in a M(VI) alkyl complex. The tacky residue which remains after subliming out 1 or 2 gives broad, uninterpretable ¹H and ¹³C NMR spectra. The residue is extremely soluble in pentane and no crystalline product could be obtained, even at −78 °C.

$$MCl_{x} + xLiCH_{2}CMe_{3} \xrightarrow{\text{ether}} (Me_{3}CCH_{2})_{3}M \equiv CCMe_{3} (1)$$

1, M = W; x = 6
2. M = Mo: x = 5

The molecular weight of 2 in cyclohexane is that expected for a dimer, while that of 1 is \sim 75% of that expected for the dimer.⁵ The mass spectra of **1** and **2** show only the monomeric ion.⁶ These data suggest that **1** and **2** are dimers which dissociate readily. (Further evidence for this behavior is the reaction of 1 with PMe₃ to give monomeric products.) The two most reasonable formulations, A and B, are based on known ex-

amples containing each type of MC₂M core. We favor A (or a distorted version thereof⁷) since two related molecules, $[Nb(CH_2SiMe_3)_2(CSiMe_3)]_2^{7b}$ and $[W(CH_2SiMe_3)_2^{-1}]_2^{7b}$ $(CSiMe_3)]_2^{7c,8}$ are planar, since we have not been able to add acetylenes to (Me₃CCH₂)₃Mo=Mo (CH₂CMe₃)₃⁹ to give B-type molecules,^{10,11} and since the ¹³C signal for the bridging carbon in $Mo_2Cp_2(CO)_4(MeC \equiv CMe)$ (a B-type molecule) is far upfield of where those in 1, 2, $[W(CH_2SiMe_3)_2$ -(CSiMe₃)]₂, and [Ta(CH₂SiMe₃)₂(CSiMe₃)]₂ are found (see below).¹² The metal in known B-type molecules is also in a lower than maximum oxidation state, while that in known A-type molecules is in the maximum formal oxidation state.

The gated decoupled ¹³C NMR spectrum of 1 in C_6D_6 shows only one set of six resonances.13 Therefore, either monomer-dimer interconversion is fast on the ¹³C NMR time scale or >~95% of one is present. The neopentylidyne C_{α} resonance is found at 317 ppm, at the high end of the range for C_{α} in terminal alkylidyne complexes of several types^{4,14} and bridging alkylidyne α -carbon atoms in [W(CH₂SiMe₃)₂- $(CSiMe_3)]_2$ (353 ppm)^{8b} and $[Ta(CH_2SiMe_3)_2(CSiMe_3)]_2$ (404 ppm).^{8b} Its coupling to ¹⁸³W ($J_{CW} = 230 \pm 5$ Hz) is

© 1978 American Chemical Society